
[POSTER] A Particle Filter Approach to Outdoor Localization using
Image-based Rendering

Christian Poglitsch∗ Clemens Arth†

Graz University of Technology
Dieter Schmalstieg‡ Jonathan Ventura§

University of Colorado Colorado Springs

ABSTRACT

We propose an outdoor localization system using a particle filter. In
our approach, a textured, geo-registered model of the outdoor envi-
ronment is used as a reference to estimate the pose of a smartphone.
The device position and the orientation obtained from a Global Po-
sitioning System (GPS) receiver and an inertial measurement unit
(IMU) are used as a first estimation of the true pose. Then, multi-
ple pose hypotheses are randomly distributed about the GPS/IMU
measurement and use to produce renderings of the virtual model.
With vision-based methods, the rendered images are compared with
the image received from the smartphone, and the matching scores
are used to update the particle filter. The outcome of our system
improves the camera pose estimate in real time without user assis-
tance.

Index Terms: I.3.7 [Computer Graphics]: Virtual Real-
ity; I.4.8 [Image Processing and Computer Vision]: Scene
Analysis-Tracking; I.6 [Image Processing and Computer Vi-
sion]: Monte Carlo; C.5.3 [Computer System Implementation]:
Microcomputers-Portable Devices (e.g., laptops, personal digital
assistants)

1 INTRODUCTION

Outdoor Augmented Reality (AR) applications today rely mostly
on the built-in sensors to provide localization. Todays smartphones
achieve self-localization by Global Positioning System (GPS),
along with a digital compass and inertial orientation sensors like
gyroscope or accelerometer. Due to limited accuracy, AR applica-
tions cannot rely solely on the sensors of smartphones. Therefore,
alternative methods must be used to replace or assist the sensors.

Vision-based methods for global localization are the most
promising, because of their high precision in estimating the cam-
era pose and their ability to run in real time on modern hardware
[17]. In this work we apply image-based rendering to evaluate hy-
potheses from a particle filter and determine the most likely camera
pose.

2 RELATED WORK

There are two dominant approaches to image-based localization.
The first requires knowledge of the scene beforehand [6, 4, 8, 14].
In this approach, vision-based localization is solved by (a) using
a collection of images or (b) a 3D model as reference. The sec-
ond approach is Simultaneous Localization and Mapping (SLAM),
where the camera is localized while the system builds a map of the
unknown scene.

Structure from Motion (SfM) approaches enable the creation of
large-scale 3D models of urban scenes. These compact scene rep-

∗e-mail:chris01@sbox.tugraz.at
†e-mail:arth@icg.tugraz.at
‡e-mail:schmalstieg@tugraz.at
§e-mail:jventura@uccs.edu

resentations can be used for accurate image-based localization. As
the scene gets larger, recognizing unique landmarks becomes more
challenging. This difficulty is overcome by using sophisticated im-
age features such as Scale-Invariant Feature Transform (SIFT) [9],
but these are too expensive to compute in real-time [14, 6, 8, 18].

Reitmayr and Drummond [11, 12] present an edge-based track-
ing system using textured 3D building models for accurate tracking
on a smartphone. They make use of the video image as well as
gyroscope and measurements of gravity and magnetic field. This
work mainly addresses frame-to-frame tracking, but also includes
an approach for re-localization using features extracted using the
FAST corner detector [13].

Aubry et al. [2] demonstrate a technique that can reliably align
images of architectural sites, like drawings, paintings or historical
photographs, to a 3D model of the site. To align different query
inputs like drawings to a 3D model, local feature matching based on
interest points, e.g., SIFT, often fails to find correspondences across
paintings and photographs. Sibbing et al. [15] explore how point
cloud rendering techniques can be used to create virtual views from
which one can extract features that match image-based features as
closely as possible.

Our approach also uses rendering of a textured model from many
possible poses; however, in contrast to Reitmayr and Drummond
[11, 12], we use pixel-wise cost functions instead of edge search
and apply our cost functions to continuous particle filtering, rather
than one-shot localization. Thus, our approach unifies localization
and continuous tracking in a single method.

3 SYSTEM OVERVIEW

Our approach requires matching of a video stream from a smart-
phone to a virtual model. Therefore, our system uses a virtual
model and sensor readings from a smartphone as input data.

The rendering of the virtual environment requires a geo-
registered model of the environment and geo-registered panorama
images for texturing the model.

Data collected from the smartphone includes the video stream
and device pose as estimated by the non-visual sensors. The device
delivers latitude and longitude from the GPS unit in the WGS84
datum and orientation as yaw, pitch and roll angles from the inertial
measurement unit (IMU). In our experiments we run the particle
filter algorithm on a desktop computer.

4 PARTICLE FILTER

A particle filter is a simulation-based method for tracking a system
with partially observable state. We briefly review particle filters
in this section. The reader is referred to Thrun et al. [16] for a
more detailed review. A particle filter maintains a weighted and
normalized set of sampled states, St = {〈xi

t ,w
i
t〉 i = 1,,N}, called

particles pi
t , where xi

t is the state of the ith particle and wi
t is its

weight. The weight of a particle can be thought of as the probability
that the particle’s state corresponds to the true state of the system.
In our case, the state is the camera pose. In our system, one iteration
is processed for every new frame when it arrives. The steps of one
particle filter iteration are as follows:

Figure 1: The system uses a geo-registered mesh model (left) and panorama images (middle) as input. Using projective texture mapping, both
input data sources are combined to produce virtual renderings of the environment (right).

1. Each particle is propagated according to our propagation
model

2. Their weights are computed by comparing rendered and real
world frames

3. The top ranked particles are re-sampled to obtain a new set
of equally weighted particles, which approximates the new
posterior distribution

4.1 Motion model
In this discussion, we refer to the device pose delivered by the in-
ternal GPS/IMU sensors as the “sensor pose.”

Each particle pi
t is formed by perturbing a prior pose by a sample

from a statistical motion model. Similar to the work of Klein and
Murray [7], we sample these motions from a Gaussian noise model.
For the initial step we propagate particles as follows:

pi
t,d = ci,d +N (0,σd) (1)

where pi
t is the particle, ci,d the d-th dimension of the sensor pose ci

of the ith frame and σd the standard deviation of the noise added for
that dimension. For the following re-sampling steps, c is replaced
by the state of one of the most probable particles from the previous
iteration.

pi+
t,d = pi−

t,d +N (0,σd) (2)

where pi+
t is a particle for the current frame, pi−

t is a probable par-
ticle of the previous frame, d the dimension and σd the standard
deviation of the noise added for that dimension.

For each frame, changes in the sensor data are measured. The
most probable particles pi−

t are duplicated and modified with the
sensor changes between the current and the previous frame.

pt = pi−
t +(c+i − c−i) (3)

where c−i is the sensor pose of the previous frame and c+i the sensor
pose of the current frame. The unmodified sensor pose is also added
as a particle.

In summary, for maximum robustness, our particle re-sampling
includes (a) the most likely particles from the previous iteration (b)
the most likely particles, modified with changes between the cur-
rent and last frame according to the sensors and (c) the unmodified
sensor pose.

4.2 Calculating particle weight
To compute the weight of a particle, we compare an image rendered
at the particle’s pose to the current image from the device camera.

We use two different weighting approaches in order to capture
color, texture and edge information.

The image sum of squared distances (SSD) method compares the
rendered image to the image captured from the smartphone, with a
mask applied. We mask out the part of the rendering corresponding
to the sky (pixels not belonging to any scene geometry), specified as
a binary mask m j ∈ {0,1}. We compute the SSD for each particle
pi as follows:

ei
I =

∑ j m j · ||I j−Vi, j||2

∑ j m j
(4)

where ei
I is the error, I is the camera image, and V j is the rendered

image for particle i.
The gradient magnitude SSD method computes the average dif-

ference between the gradient magnitudes of the rendered image and
the masked gradient magnitudes of the camera image as follows:

ei
G =

∑ j m′j · (||GI
j||− ||GV

i, j||)2

∑ j m′j
(5)

where ei
I is the error, GI contains the gradient magnitudes of the

camera image, GV
i contains the gradient magnitudes of the rendered

image for particle i, and m′ is the binary mask after applying a di-
lation operator to avoid masking out the contours of the buildings.
The gradients are computed using the Sobel operator applied to the
rendered and the real world image.

The error value for each method is normalized so that

N

∑
i=0

ei
I = 1,

N

∑
i=0

ei
G = 1 (6)

The weights are then calculated as

wi
I = exp(−ei

I), wi
G = exp(−ei

G) (7)

and normalized so that

N

∑
i=0

wi
I = 1,

N

∑
i=0

wi
G = 1 (8)

The final weight is calculated simply as the sum of the weights from
the two methods:

wi = wi
I +wi

G (9)

The particle with the highest combined weight wi is considered
the best estimate of the device pose, i.e., the pose to be used for AR
rendering.

Before computing the error functions and weights, all images un-
der consideration are downsampled. This helps to avoid or reduce
artifacts and to improve performance.

Dimension σd Approx. range
xeye,yeye 5.5 up to 9 meters
xcenter,ycenter 0.25 up to 15 degrees
zcenter,xup,yup,zup 0.085 up to 5 degrees

Table 1: Noise parameters for the initialization step.

Dimension σd Approx. range
xeye,yeye 0.36 up to 60 centimeters
xcenter,ycenter 0.01 up to 0.5 degrees
zcenter,xup,yup,zup 0.01 up to 0.5 degrees

Table 2: Noise parameters for the update steps.

5 EXPERIMENTS

The test areas for our particle filter system are the Hauptplatz and
Tummelplatz in Graz, Austria. For recording GPS, IMU data and
the video stream we used an Apple iPhone 4. To process the particle
filter, we used a desktop computer with an Intel Core i7-4770, 16
GB RAM and an AMD Radeon R9 280X.

5.1 Implementation notes
This section provides some details about the particle filter config-
uration. Each frame has a width of 100 pixels, whereas the height
depends on the aspect ratio of the smartphone image. Our system
is initialized with 1000 particles. The chosen noise parameters for
the initial particle distribution governed by Equation 1 are given in
Table 1.

In the subsequent update iterations, the three most probable par-
ticles and the sensor pose ci are used for re-sampling. The chosen
noise parameters for the particle motion model governed by Equa-
tion 2 are given in Table 2. In total, the update step uses only 20
particles. For future work we consider to use Kullback-Leibler dis-
tance (KLD)-sampling to decide if the resampling step is necessary.
This approach adjusts the number of samples based on the likeli-
hood of observations [5].

5.2 Results and discussion
We tested our system with many images and videos recorded in our
test areas. Figure 2 shows that we achieve accuracy within 50 cm
on a geo-referenced image. After initialization (669 ms), the system
runs at 30Hz. The rate of convergence would likely be increased by
using more particles in the update steps, but in our tests we used the
maximum number of particles possible to achieve real-time rates
with our current unoptimized implementation.

Figure 3 shows sampled frames from the test videos alongside
renderings of the virtual environment, comparing the best pose from
the particle filter to the uncorrected sensor pose. As can be clearly
seen in these examples, our approach significantly improves the
camera pose and offers much better real-virtual alignment than the
raw camera pose delivered by the GPS and IMU sensors. We also
found that our system is robust to image artifacts like shadows and
the presence of objects that are not in the virtual environment, like
cars or people. Examples of occluding objects are shown in the sec-
ond row of Figure 3, where occluding people, street cars, and street
carts are present in the query image.

In most cases, the rendering of the best particle closely matches
the input camera image. However, in Figure 2, some jitter in the
pose can be observed. We found that, because the 3D model is tex-
tured with projective texture mapping, the localization result is neg-
atively affected if the camera’s viewing angle differs greatly from
the viewing angle of the images used to make the 3D model. The
nature of the random sampling process in the particle filter can also
cause jittering in stationary scenes, for example, when two particles
have similar weights, but slightly different poses.

Figure 2: Result of particle filter iterations on a geo-referenced im-
age.

Our experiments indicate that SSD is less effective if a signifi-
cant amount of sky is visible, causing the number of pixels under
consideration to decrease and leading to a high weight. Conversely,
gradient magnitude SSD works best when parts of the building and
parts of the sky are visible. This is because the highest gradients
are at the contour of the buildings. Thus the two weights are com-
plementary and it makes sense to combine them.

Although our system as tested is implemented on a desktop com-
puter, we are confident that the approach could easily achieve real-
time rates on mobile hardware. This is because most of the com-
putation consists of either rendering of textured models with low
polygon count or simple image processing operations with small
filter size.

6 CONCLUSIONS AND FUTURE WORK

Our work has demonstrated an accurate outdoor localization system
that runs in real time. The particle filter is flexible in its ability to
adapt to different computation environments and different desired
levels of performance, accuracy and robustness, by simply adjust-
ing the number of particles and propagation model used.

Another interesting property of our system is that both localiza-
tion and continuous tracking are achieved with the same method.
In addition, we do not make any use of slow-to-compute feature
descriptors or large descriptor databases and, instead, only require
a simple textured model of the target environment. Therefore, a
mobile version of the application may be feasible in the near future.

A disadvantage of the proposed system is increased jitter in sta-
tionary scenes. This condition occurs when two particles with a
slightly different pose have a similar weight. One possible solution
is to back-project feature points to the synthetic model in order to
obtain 3D-2D matches that can be used to run a much more stable
and faster tracking [1].

One avenue of future work is to improve the particle propaga-
tion model. A more accurate distribution function could provide
even further performance, because fewer particles would be neces-
sary. For example, a pedestrian motion model could be used [10].
Another improvement would be view-dependent rendering [3] to
increase the accuracy of the image-based rendering and the range
of the localization.

Our work hints at the possibility that image-based localization

Figure 3: The input data for a pose query is an image from the smartphone (left) and sensor data from GPS and gyroscope. The device sensors
are used as an initial guess (right). Our system provides an improvement of the initially guessed camera pose (middle). Note the robustness to
issues such as occluding objects (second row) and lighting (third row).

based on sparse descriptors may in the long run be replaced by
dense GPU-based methods. In particular, the increasing availability
of high-quality urban models created with structure-from-motion
methods, supported by large geo-data providers such as Google or
Microsoft, can be leveraged in GPU-based “tracking by synthesis”
approaches such as the one explored in this paper.

ACKNOWLEDGEMENTS

This work was supported in part by the Christian Doppler
Gesellschaft (CD Labor Handheld Augmented Reality).

REFERENCES

[1] H. Alvarez, I. Aguinaga, and D. Borro. Providing guidance for main-
tenance operations using automatic markerless augmented reality sys-
tem. In Mixed and Augmented Reality (ISMAR), 2011 10th IEEE In-
ternational Symposium on, pages 181–190, Oct 2011.

[2] M. Aubry, B. C. Russell, and J. Sivic. Painting-to-3d model alignment
via discriminative visual elements. ACM Trans. Graph., 33(2):14:1–
14:14, Apr. 2014.

[3] P. E. Debevec, Y. Yu, and G. Borshukov. Efficient View-Dependent
Image-Based Rendering with Projective Texture-Mapping. Rendering
Techniques, pages 105–116, 1998.

[4] Z. Dong, G. Zhang, J. Jia, and H. Bao. Keyframe-based real-time
camera tracking. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 1538–1545, Sept 2009.

[5] D. Fox. Kld-sampling: Adaptive particle filters. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, NIPS, pages 713–720. MIT
Press, 2001.

[6] A. Irschara, C. Zach, J. Frahm, and H. Bischof. From structure-from-
motion point clouds to fast location recognition. In Proceedings of
Computer Vision and Pattern Recognition (CVPR), 2009.

[7] G. Klein and D. Murray. Full-3d edge tracking with a particle filter.
In British Machine Vision Conference Proc 17th, 2006.

[8] Y. Li, N. Snavely, and D. P. Huttenlocher. Location recognition us-
ing prioritized feature matching. In K. Daniilidis, P. Maragos, and
N. Paragios, editors, ECCV (2), volume 6312 of Lecture Notes in
Computer Science, pages 791–804. Springer, 2010.

[9] D. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[10] M. Quigley, D. Stavens, A. Coates, and S. Thrun. Sub-meter indoor
localization in unmodified environments with inexpensive sensors. In
IROS, pages 2039–2046. IEEE, 2010.

[11] G. Reitmayr and T. Drummond. Going out: robust model-based track-
ing for outdoor augmented reality. In Mixed and Augmented Reality,
2006. ISMAR 2006. IEEE/ACM International Symposium on, pages
109–118, Oct 2006.

[12] G. Reitmayr and T. Drummond. Initialisation for visual tracking in
urban environments. In Mixed and Augmented Reality, 2007. ISMAR
2007. 6th IEEE and ACM International Symposium on, pages 161–
172, Nov 2007.

[13] E. Rosten and T. Drummond. Fusing points and lines for high perfor-
mance tracking. In Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 2, pages 1508–1515 Vol. 2, Oct
2005.

[14] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization
using direct 2d-to-3d matching. In Proceedings of International Con-
ference on Computer Vision (ICCV), 2011.

[15] D. Sibbing, T. Sattler, B. Leibe, and L. Kobbelt. Sift-realistic ren-
dering. In 3D Vision - 3DV 2013, 2013 International Conference on,
pages 56–63, June 2013.

[16] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press,
2005.

[17] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg. Global local-
ization from monocular slam on a mobile phone. IEEE Transactions
on Visualization and Computer Graphics, 20(4):531–539, 2014.

[18] J. Ventura and T. Hollerer. Wide-area scene mapping for mobile vi-
sual tracking. In Mixed and Augmented Reality (ISMAR), 2012 IEEE
International Symposium on, pages 3–12, Nov 2012.

